Как правильно рассчитать нагрузку на фундамент

Методика расчёта необходимого количества свай для фундамента с исходными данными и конкретными примерами. Провести точный и правильный расчёт нагрузки свайного фундамента с учётом всех параметров, требований, норм и правил может каждый человек, знающий сопромат и разбирающийся в математике. На практике это сложно и не нужно неспециалисту, а возможные просчёты могут привести не только к убыткам.  Но понять принцип расчёта поможет краткая упрощённая методика:

Алгоритм ведения расчетов

Подсчет усилий выполняют специалисты сертифицированных институтов и строительных лабораторий. Сотрудники специализированных учреждений обладают всеми необходимыми знаниями и высоким уровнем подготовки. Оснащение исследовательских центров высококлассной техникой значительно упрощает процесс подсчета нагрузок.

Сбор нагрузок на фундамент

Определение необходимых величин ведут с высокой точностью. Правильность вычислений влияет на прочность и надежность всех конструкций.

При возведении частных домов выполнение расчетов с высокой точностью не требуется. В этом случае используют упрощенный вариант подсчетов. В качестве технических инструментов применяют специальные компьютерные программы – строительные калькуляторы.

Подсчет усилий от конструктивных элементов ведут с помощью укрупненных показателей. Для корректировки вычислений под конкретные условия строительства применяют поправочные коэффициенты.

Ленточный фундамент: какой он бывает

Прежде всего ленточные фундаменты различаются по степени заглубления в грунт.

Заглубленный ленточный фундамент закладывается ниже уровня промерзания грунта; такая конструкция предназначена для больших тяжелых сооружений с глубоким подвалом либо цокольным этажом. Строго говоря, специалисты не считают экономически целесообразной организацию заглубленного ленточного фундамента высотой более 2,5 м, поэтому для дома с высокими подвальными или цокольными помещениями лучше рассмотреть другие варианты.

Для легких загородных домов заглубленный фундамент не рекомендован: малый вес строения не в состоянии будет компенсировать действие сил морозного пучения грунта на большую площадь его подземной поверхности. Это чревато неравномерными подвижками фундамента и изменением его геометрии, что неизбежно скажется на состоянии конструкций дома.

Мелкозаглубленный ленточный фундамент устраивается выше глубины промерзания и рекомендуется для климатических зон, где эта глубина составляет не более 1,7 м. На непучинистых грунтах конечная глубина заложения фундамента не имеет особого значения и диктуется только инженерными характеристиками здания. На пучинистых грунтах фундамент закладывают на минимальную глубину 0,75 – 1 м, при этом необходимо принимать меры для дренажа и утепления грунта.

Также ленточный фундамент может быть монолитным или сборным.

Монолитный ленточный фундамент сооружается путем заливки бетона в опалубку. Он считается самым прочным и надежным, однако требует времени на застывание бетона и обходится достаточно дорого из-за серьезных земляных работ и необходимости привлечения наемной рабочей силы.

Сборный ленточный фундамент сооружается из отдельных конструктивных элементов. Чаще всего это железобетонные блоки ФБС (нередко используют малоформатные бетонные и керамзитобетонные блоки, и даже кирпич). Преимущества сборного фундамента – простота и быстрота сборки и возможность возводить стены сразу после ее окончания, так как не нужно ждать затвердевания бетона. Недостатком конкретно блоков ФБС считается их большой вес и размер – это неудобно при строительстве небольшого дома. Кроме того, все виды сборных фундаментов подходят только для непучинистых и слабопучинистых грунтов. При средней степени пучения грунтов допускается сооружение сборного фундамента только из блоков, содержащих выпуски арматуры для их соединения между собой.

Фундаментные блоки ФБС

Конкретные цифры для расчётов

В случае, когда сложно либо невозможно определить несущую способность грунта, принимается значение 2,5 кг\см2,  это усреднённый показатель для грунтов российской средней полосы.

Исходные данные для расчёта свайных фундаментов

Максимальный шаг винтовых свай для малоэтажного и хозяйственного индивидуального строительства:

  • строения из бревна или бруса 3 м;
  • сооружения каркасного либо сборно-щитового типа 3 м;
  • здания с несущими стенами из облегчённых блоков 2,5 м;
  • дома из кирпича  и полнотелых бетонных блоков 2 м;
  • монолитные сооружения 1,7 м.

Для кустов свай под печи, колонны и подобные сооружения с сосредоточенной нагрузкой допустимое минимальное расстояние между сваями 1,5 м, для веранд и аналогичных построек 1,2 м.

Вес конструкций и частей зданий

Для сбора весов  допустим приблизительный подсчёт. Ошибка в большую сторону приведёт к небольшому увеличению стоимости работ. Если же реальные нагрузки окажутся больше расчётных, то возможно разрушение фундамента и здания в целом.

Предпочтительный ориентир при отсутствии точной информации максимальное значение.

Конкретные цифры для расчётов

Стены :

  • кирпичные 600-1200кг\м2;
  • бревенчатые 600 кг\м2;
  • газо- и пенобетонные 400-900 кг\м2;
  • каркасные и панельные 20-30 кг\м2.

Крыши с учётом стропильной системы:

  • листовая сталь, в т.ч. металлопрофиль и металлочерепица 20-30 кг\м2;
  • листы асбоцементные 60-80 кг\м2;
  • рубероид и другие мягкие покрытия 30-50 кг\м2.
Читайте также:  Как поднять каркасный дом для ремонта и передвинуть его на новое место

Перекрытия:

  • деревянные с утеплителем 70-100 кг\м2;
  • цокольные с утеплителем 100-150 кг\м2;
  • монолитные армированные 500 кг\м2;
  • плитные пустотелые 350 кг\м2.

Снеговая и ветровая нагрузки подсчитываются с учётом средних региональных показателей с поправочными коэффициентами. Средняя эксплуатационная (полезная) нагрузка с учётом веса людей, оборудования, техники, мебели, домашней утвари — 100 кг\м2. После сведения веса необходимо применить к результату коэффициент запаса 1,2.

Пример сбора нагрузок на фундамент

Исходные данные:

Предполагается строительство жилого 2-х этажного дома с холодным чердаком и двухскатной крышей. Опирание крыши производится на две крайних стены и одну стену под коньком. Подвал не предусмотрен.

Место строительства — г. Нижегородская область.

Тип местности — поселок городского типа.

Размеры дома — 9,5х10 м по наружным граням фундамента.

Угол наклона крыши — 35°.

Высота здания — 9,93 м.

Фундамент — железобетонная монолитная лента шириной 500 и 400 мм и высотой 1 900 мм.

Цоколь — керамический кирпич, толщиной 500 и 400 мм и высотой 730 мм.

Наружные стены — газосиликат плотностью 500 кг/м3, толщина стеной 500 мм и высотой 6 850 мм.

Внутренние несущие стены — газосиликат плотностью 500 кг/м3, толщиной стены 400 м и высота 6 850 мм.

Перекрытия и крыша — деревянные.

Конструкции, которые могли бы задержать снег на крыше, не предусмотрены.

План фундамента.

Разрез дома, с действующими нагрузками.

Требуется:

Собрать нагрузки на центральную ленту фундамента, расположенную под внутренней несущей стеной, если грузовая площадь от перекрытия 4,05 м2, а от крыши — 5,9 м2.

Сбор нагрузок на внутреннюю несущую стену.

Определяем нагрузки, действующие на 1 м2 грузовой площади (кг/м2) всех конструкций, нагрузка которых передается на фундамент.

Вид нагрузки Норм. Коэф. Расч.
Нагрузка от пола 1-го этажа (q1)

Постоянные нагрузки:

— нижняя обшивка из досок t=30мм (ель ρ=450кг/м3)

— утеплитель t=180мм (пенопласт ρ=20кг/м3)

— доски пола t=36мм (ель ρ=450кг/м3)

Временные нагрузки:

— жилые помещения

 

13,5 кг/м2

3,6 кг/м2

16,2 кг/м2

 

150 кг/м2

 

1,1

1,3

1,1

 

1,3

 

15,4 кг/м2

4,7 кг/м2

17,8 кг/м2

 

195 кг/м2

ИТОГО 183,8 кг/м2   232,9 кг/м2
Нагрузка от перекрытия 1-го этажа (q2)

Постоянные нагрузки:

— нижняя обшивка из досок t=16мм (ель ρ=450кг/м3)

— доски пола t=36мм (ель ρ=450кг/м3)

Временные нагрузки:

— жилые помещения

 

7,2 кг/м2

16,2 кг/м2

 

 150 кг/м2

 

1,1

1,1

 

1,3

 

7,9 кг/м2

17,8 кг/м2

 

195 кг/м2

ИТОГО 173,4 кг/м2   220,7 кг/м2
Нагрузка от перекрытия 2-го этажа (q3)

Постоянные нагрузки:

— нижняя обшивка из досок t=30мм (ель ρ=450кг/м3)

— утеплитель t=180мм (пенопласт ρ=20кг/м3)

— верхняя обшивка из досок t=30мм (ель ρ=450кг/м3)

Временные нагрузки:

— чердачные помещения

 

13,5 кг/м2

3,6 кг/м2

13,5 кг/м2

 

70 кг/м2

 

1,1

1,3

1,1

 

1,3

 

15,4 кг/м2

4,7 кг/м2

15,4 кг/м2

 

91 кг/м2

ИТОГО 100,6 кг/м2   126,5 кг/м2
Нагрузка от конструкций крыши (q4)

Постоянные нагрузки:

— внутренняя обшивка из досок t=16мм (ель ρ=450 кг/м3)

— стропила (ель ρ=450кг/м3)

— обрешетка (ель ρ=450кг/м3)

— гибкая черепица (ρ=1 400кг/м3)

Временные нагрузки:

— обслуживание крыши

 

7,2 кг/м2

3,4 кг/м2

3,3 кг/м2

7 кг/м2

 

100 кг/м2

 

1,1

1,1

1,1

1,3

 

1,3

 

7,9 кг/м2

3,7 кг/м2

3,6 кг/м2

9,1 кг/м2

 

130 кг/м2

ИТОГО 120,9 кг/м2   154,3 кг/м2
Вес фундамента (q5)

Постоянные нагрузки:

— вес ж/б ленты шириной 400мм (железобетон ρ=2 500 кг/м3)

 

1 000 кг/м2

 

1,1

 

1 100 кг/м2

ИТОГО 1 000 кг/м2   1 100 кг/м2
Вес керамического кирпича (q6)

Постоянные нагрузки:

— вес керамического кирпича 400мм (ρ=1600 кг/м3)

 

640 кг/м2

 

1,1

 

704 кг/м2

ИТОГО 640 кг/м2   704 кг/м2
Все газосиликаных блоков (q7)

Постоянные нагрузки:

— вес газосиликат 400мм (ρ=500 кг/м3)

 

200 кг/м2

 

1,1

 

220 кг/м2

ИТОГО 200 кг/м2   220 кг/м2
Снег (q8)

Временные нагрузки:

— снег

 

140 кг/м2

 

1,4

 

196 кг/м2

ИТОГО 140 кг/м2   196 кг/м2
Ветер (q9)

Временные нагрузки:

— ветер

 

15 кг/м2

 

1,4

 

21 кг/м2

ИТОГО 15 кг/м2   21 кг/м2

Определяем нормативную и расчетную нагрузки на фундамент:

qнорм = 183,8кг/м2 · 4,05м + 173,4кг/м2 · 4,05м + 100,6кг/м2 · 4,05м + 120,9кг/м2 · 5,9м + 1000кг/м2 · 1,9м + 640кг/м2 · 0,73м + 200кг/м2 · 6,85м + 140кг/м2 · 5,9м + 15кг/м2 · 2,95м = 7174,85 кг/м.

qрасч = 232,9кг/м2 · 4,05м + 220,7кг/м2 · 4,05м + 126,5кг/м2 · 4,05м + 154,3кг/м2 · 5,9м + 1100кг/м2 · 1,9м + 704кг/м2 · 0,73м + 220кг/м2 · 6,85м + 196кг/м2 · 5,9м + 21кг/м2 · 2,95м = 8589,05 кг/м.

Расчет ленточного фундамента: методика по определению несущей способности грунта

Все расчеты выполняются после получения на руки проекта со спецификацией по используемым строительным и крепежным материалам, необходимым для возведения и отделки сооружения.

Вычисление параметров основания по данной методике выполняется в три этапа:

Расчет ленточного фундамента: методика по определению несущей способности грунта
  1. Сбор нагрузок на ленточный фундамент.
  2. Определение параметров (ширина ленты и «подошвы», высота, глубина заложения) фундамента.
  3. Расчет возможной осадки.

Еще одним этапом, который не указан в методике, но может быть необходим при выполнении расчетов ленточного фундамента, является выполнение работ по корректировке полученных данных. Рассмотрим каждый этап более подробно.

Первичный сбор данных

Расчет ленточного фундамента: методика по определению несущей способности грунта

При определении нагрузки на основание необходимо учитывать:

  • массу сооружения;
  • предполагаемый вес ленточного фундамента;
  • массу наполнения постройки (техника, люди, мебель и пр.);
  • коэффициент снеговой и ветровой нагрузки.

Масса здания рассчитывается суммированием веса всех строительных материалов, использованных при возведении дома, учитывая особенности применяемых материалов. Для простоты вычислений рекомендуем ознакомиться с таблицей, в которой показаны нагрузки на фундамент от стен, перекрытий и крыши, выполненных из различных строительных материалов.

Расчет ленточного фундамента: методика по определению несущей способности грунта

При определении снеговых нагрузок в конкретном регионе воспользуйтесь следующей таблицей:

Для жителей Украины данная таблица будет выглядеть следующим образом:

В зависимости от конструкции крыши (угла ската) табличные данные могут потребовать применение корректирующего коэффициента:

Расчет ленточного фундамента: методика по определению несущей способности грунта
  • до 25° — коэффициент равен 1;
  • 60° и более – коэффициент не учитывается.

Для расчета снеговой нагрузки на фундамент необходимо: определить по карте свой регион, вес снежного покрова на 1 м2 кровли, коэффициент, учитывающий угол ската, после чего перемножить площадь кровли на полученные данные.

При использовании классических архитектурных решений малоэтажного строительства ветровые нагрузки на основание сооружения можно не учитывать.

Расчет ленточного фундамента: методика по определению несущей способности грунта

Расчет высоты ленточного фундамента

Высота фундаментной ленты представляет собой сумму параметров, включающих в себя следующие данные:

Для определения рекомендованной глубины заложения ленточного фундамента в зависимости от грунта воспользуйтесь таблицей:

Расчет ленточного фундамента: методика по определению несущей способности грунта

Для противодействия силам пучения необходимо заглублять основание ниже точки промерзания на 15-20 см.

На примере рассмотрим расчет предполагаемой высоты основания, при условии, что глубина промерзания грунта в регионе – 1,5 м; предполагаемая высота цоколя – 0,5 м.

Расчет ширины «подошвы» ленточного фундамента

Расчет ленточного фундамента: методика по определению несущей способности грунта

Вычисление данного параметра зависит от используемого в строительстве «коробки» материала, длины и толщины несущих стен. Упрощенный вариант расчета ширины ленты – использование усредненных данных, приведенных в таблице ниже:

Для более точных вычислений ширины «подошвы» ленты можно воспользоваться формулой:

Где:

Расчет ленточного фундамента: методика по определению несущей способности грунта
  • 1.3 – коэффициент запаса по нагрузке;
  • Р – полная масса постройки с фундаментом в кг;
  • L – длина фундаментной ленты в см;
  • Ro – удельное сопротивление грунта.

Зная параметры ленты можно легко посчитать объем ленточного основания. Делается это следующим образом: необходимо перемножить длину ленты на ее ширину и высоту.

Следует понимать, что конструкция фундамента может не иметь постоянного сечения. В некоторых случаях сечение ленточного фундамента может быть выполнено в форме параллелепипеда с наклонной наружной поверхностью для лучшего сопротивления силам пучения. Т-образная форма сечения с расширенной «подошвой» (лента с расширенным основанием) возводится в целях экономии материала.

Для определения массы опорной конструкции нужно объем ленты умножить на ее удельный вес, учитывая использованные для его возведения материалы.

Расчет стоимости фундамента – на что обратить внимание

Армирование. Много кто не учитывает цену на данный элемент, но она достаточно большая и может существенно ударить по бюджету хозяина. 1 метр арматуры М8 будет стоять не меньше 25 рублей, а вот 1 тонна такого металла обойдется примерно в 15 тысяч рублей. Чем толще армирование, тем выше цена. Она доходит до 45 тысяч рублей за тонну материала. Причем на один куб бетона идет от 150 кг до 350 кг (на колонны) арматуры. То есть, не менее чем 200 рублей на 1 кубический метр.

Далее нужно купить сам бетон. Если воспользоваться услугами компаний, доставляющими строительные материалы, куб обойдется не менее   3500 рублей. Намного дешевле будет сделать самому. 1 тонна крупного щебня будет стоять примерно 2000 рублей с доставкой, в зависимости от вашего места расположения, 1 тонна песка тоже 2000-2400 рублей. Цемент лучше всего покупать марки М500 и мешать 1: 3.5 с песком – будет немного выгоднее. Таким образом, у вас получается один куб бетона около 1800 рублей. Это небольшая экономия, если учесть трудозатраты. Хотя, если пересчитать на солидные объемы работ, то можно неплохо сэкономить, изготовляя бетон для фундамента своими руками.

Опалубка – еще один подводный камень. Ее стоимость тоже редко учитывают, но она может неслабо ударить по карману, особенно, если нужно заливать одновременно метров 10-15 ленточного фундамента. Предположим, что делать мы ее будем из листа ОСБ, так как это наиболее дешевый, практичный, «многоразовый» вариант. 1 лист 1500х3000х15 мм будет стоять примерно 650 рублей. Даже если его разделить пополам, мы займем только 1.5 метра полезной площади. Таким образом, создав несложную пропорцию можно расчитать стоимость 1 метра погонного опалубки: 650 : 1.5 = 433 рубля. На всю длину: 433х15= 6495 рублей. К этой сумме еще добавим 500 рублей на деревянный брус 40х40 мм для поддержания конструкции.

Калькулятор количества свай

Кол-во свай: Диаметр сваи: Длина сваи:

Если вам необходимо рассчитать количество винтовых свай, которые потребуются для строительства фундамента на вашем объекте, вы можете сделать это, не выходя из дома. Вам нужно только знать первичные параметры.

Воспользуйтесь онлайн-калькулятором расчета количества свай на нашем сайте. Помимо необходимого количества, вы сможете узнать также их предварительный диаметр и длину.

Расчет свайного поля онлайн достаточно прост. Для этого не нужно иметь специальное образование и читать литературу. Вам требуется только внести данные в существующие графы.

Расчет количества винтовых свай с помощью калькулятора

  1. Укажите длину сторон вашего строения, выбрав по форме от 3-х до 15-ти метров.
  2. Укажите тип строения – дом, гараж, бытовое сооружение и пр.
  3. Укажите «этажность», если появляются соответствующие графы. Заполняя графы, обратите внимание на то, что дом с мансардой будет считаться полутора этажным строением.
  4. Выбирайте материал вашего строения.
  5. Укажите тип грунта на участке.
  6. Укажите количество углов планируемого дома.
  7. Укажите высоту цокольного этажа из предложенных вариантов.
  8. Отметьте, собираете ли вы устанавливать камин/печку.
  9. Кликнете «Рассчитать».

Через несколько секунд появится результат подсчета необходимого количества свай для вашего объекта.

Рассмотрим пример

Имеется торфяной участок с глубиной торфа 3 метра. Вы решили построить деревянный дом (брус 150х150), площадью 10 на 10 метров. Дом планируется оригинальной формой с девятью углами и мансардой. На высоте 50 см над землей будет расположен пол. Чтобы зимой вам было тепло, было решение установить в доме камин.

После того, как были внесены все данные, калькулятор подсчета количества винтовых свай выдал нам результат – 32 сваи, диаметром 108 мм и длиной в 4,5 метра.

Конечно, данный расчет является предварительным. Он служит ориентиром при планировании бюджета и дальнейшего заказа. Для более точного результата необходим выезд специалиста на объект для детального осмотра участка под планируемую застройку, где будут учтены все факторы.

Самостоятельный расчет на месте

Такой же расчет можно сделать самостоятельно и без использования калькулятора. Полученный таким способом результат в большинстве случаев менее точный. Вам нужно будет определить тип и плотность грунта, проанализировать природный рельеф, определить расстояние, на котором находятся более плотные слои почвы.

Еще одним вариантом, как можно узнать необходимое количество свай – это рассчитать их по плану первого этажа. Здесь вам необходимо посчитать количество углов и стыки внешних стен с несущими перегородками.

В указанных местах и должны располагаться сваи, они должны идти по периметру с шагом не более трех метров.

Если вы планируете установить камин, то, в зависимости от его веса, вам необходимо установить под него от одной до четырех свай.

Проведите расчет на калькуляторе и по плану первого этажа и сравните результаты.

Расчет количества арматуры для ленточного фундамента

Основание ленточного типа обеспечивает повышенную устойчивость строений на различных почвах. Конструкция представляет собой бетонную ленту, повторяющую контур здания и расположенную под капитальными стенами. Усиление стальной арматурой повышает прочностные характеристики бетонной основы и положительно влияет на ее долговечность. Для сооружения пространственной решетки можно использовать арматуру диаметром 10 мм.

Расчет количества арматуры для ленточного фундамента
Расчет количества арматуры для ленточного фундамента

Исходные данные для выполнения расчетов:

Расчет количества арматуры для ленточного фундамента
  • длина и ширина фундаментной базы;
  • сечение железобетонной ленты;
  • интервал между каркасными элементами;
  • общее количество обвязочных поясов;
  • размер ячеек силовой решетки.
Расчет количества арматуры для ленточного фундамента

Рассмотрим порядок вычислений:

Расчет количества арматуры для ленточного фундамента
  1. Рассчитайте общую длину ленточного контура.
  2. Вычислите количество элементов в поясах.
  3. Определите метраж горизонтальных стержней.
  4. Вычислите потребность в вертикальных прутках.
  5. Рассчитайте длину поперечных перемычек.
  6. Сложите полученный метраж.
Расчет количества арматуры для ленточного фундамента

Расчет бетона для фундамента

Профессиональный проект дома, а именно такие документы будут официальными при его введении в строй, показывает и количество строительных материалов. По нему определите и то, сколько чего надо иметь, приступая к закладке фундамента. Узнать, сколько потребуется бетона, самое простое в этих расчетах.

Марка бетона для основы должна быть не менее 100, при использовании цемента М400 его пропорция с песком составит 1:4. Но это будет не прочный бетон, его упрочняют четырьмя-пятью частями гравия и стальной арматурой. Вес кубометра железобетона будет равняться 1,8-2,5 тонны.

Представим приблизительный расчет типов фундамента и нагрузок. Воспользовавшись данной информацией, даже малоопытный строитель сможет понять, сколько материала потребуется для работы, и в какую сумму это всё обойдется.

Определение несущей способности грунта

Около 15-20 % затрат от строительства дома занимает обустройство фундамента.

Устройство фундамента любого дома составляет от 15 до 20% затрат на общую стоимость строительства. Причем чем глубже фундамент закладывается в грунт, тем выше стоимость проводимых строительных работ. Эта причина довольно часто заставляет большинство застройщиков поднимать подошву фундамента ближе к поверхности грунта. В таком случае необходимо правильно рассчитать возможности несущей способности грунтов. Расчет начинается после сбора и анализа информации о пористости грунта, которая обусловлена его сопротивлением и степенью влажности.

Важный показатель, который стоит брать в расчет – сейсмичность.

Одновременно возникающее давление вследствие статической нагрузки и вибрации снижает прочность грунта, вызывает псевдожидкое состояние. Расчетное сопротивление грунтов в зоне сейсмичности обычно увеличивают в 1,5 раза, что влечет за собой соответствующее увеличение площади фундамента строения.